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1. Overview

I am interested in algebraic geometry and related areas. My current research work is centered on
the geometry of K3 surfaces and cubic fourfolds, especially their moduli theory and automorphism
groups.

A complex K3 surface is a simply connected smooth compact complex surface with an every-
where non-degenerate holomorphic two form. The global Torelli theorem holds for K3 surfaces
([PŠ71],[BR75],[LP81]). An insightful construction by Beauville-Donagi [BD85] showed that the
Fano scheme of lines on a smooth cubic fourfold is a hyper-Kähler fourfold, which is deformation
equivalent to the Hilbert scheme of two points on a K3 surface. Later on, Voisin proved the glob-
al Torelli theorem for cubic fourfolds ([Voi86]). More relations between cubic fourfolds and K3
surfaces were investigated from both perspectives of Hodge theory ([Has00]) and derived category
([Kuz10]).

An important problem is to classify the automorphism groups ofK3 surfaces and cubic fourfolds.
A celebrated result from Mukai ([Muk88]) is that there are 11 maximal finite groups of symplectic
automorphisms of K3 surfaces. More precisely, these 11 groups are exactly those subgroups of the
Mathieu groupM23 with 5 orbits in their induced action on {1, 2, ..., 24}. However, the classification
of automorphism groups of cubic fourfolds is far from established. An automorphism of a cubic
fourfold X is called symplectic if it acts trivially on H3,1(X). In my work with Radu Laza [LZ18],
we classified all symplectic automorphism groups of smooth cubic fourfolds.

Theorem 1.1 (Laza-Zheng). There are 34 finite groups which can be realized as symplectic auto-
morphism groups of smooth cubic fourfolds, detailed description can be find in theorem 3.2.

Moduli theory is a central theme in algebraic geometry. The key notion in moduli theory is
moduli space, which describes a universal family of geometric objects of a given type, in the sense
that any other such family is realized inside it. So any structure such a moduli space might possess,
is inherited by all other families of such objects. Conversely, anything that all these objects (or
families of such) have in common is passed on to the moduli space.

There are three standard approaches to construct and compactify moduli spaces in algebraic
geometry. The most accessible approach is geometric invariant theory. The second approach is using
period map in Hodge theory. The third approach is the construction of KSBA compactification via
minimal model program. These three approaches are related to each other, and form a very active
and fascinating research area in modern algebraic geometry.

For polarizedK3 surfaces, cubic fourfolds or certain objects related to them, the Hodge theoretic
approach behaves very well thanks to the global Torelli theorems. One can either look at GIT
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constructions, or realize moduli spaces as locally symmetric varieties via the period maps. It is
then natural to study the GIT-compactifications and Baily-Borel compactifications, and ask for
relations between them. In many cases, the images of the moduli of smooth geometric objects
under the period maps are complements of hyperplane arrangements in arithmetic quotients of
Hermitian symmetric domains (either balls or type IV domains). For examples, the moduli spaces
of smooth cubic surfaces ([ACT02]), smooth cubic threefolds ([ACT11], [LS07]), smooth quartic
curves ([Kon00]) and non-hyperelliptic curves of genus 4 ([Kon02]) are realized as arrangement
complements in balls of dimensions 4, 10, 6, 9 respectively. These four cases were considered again
in [KR12] via families of abelian varieties with extra structures.

Inspired by the work of Shah ([Sha80]), Looijenga ([Loo03a, Loo03b]) constructed a compact-
ification for an arrangement complement in an arithmetic quotient of ball or type IV domain.
This is now called Looijenga compactification, and it coincides with Baily-Borel compactification
if the hyperplane arrangement is trivial. In many situations (including cases of cubic fourfold
[Loo09],[Laz10], cubic surface [ACT02], cubic threefold [ACT11],[LS07], quartic curve [Kon00],
genus 4 curve [Kon02], rational elliptic surface [HL02] and so on), the GIT-compactifications are
identified with the Looijenga compactifications via extensions of the period maps.

In my work with Chenglong Yu [YZ18b], we showed:

Theorem 1.2 (Yu-Zheng). The moduli space of cubic fourfolds with a specified action of a finite
group is isomorphic to an arithmetic quotient of a Hermitian symmetric domain (either a ball or a
type IV domain). Moreover, the GIT-compactification and Looijenga compactification are naturally
identified, and a criterion about the finite group action is given on when the Looijenga compactifi-
cation is actually Baily-Borel compactification. See theorem 4.1 for more explicit statement.

In [YZ18a], we extended the methods in [YZ18b] to obtain new results for singular sextic curves,
see theorem 4.2.

2. Occult period maps

2.1. Conjectures by Kudla and Rapoport. My first research topic was on a series of conjectures
made by Kudla and Rapoport in [KR12] (remark 5.2, 6.2, 7.2, 8.2). In their paper, Kudla and
Rapoport interpreted what they called occult period maps as morphisms between moduli stacks
arising as GIT quotients and moduli stacks of abelian varieties with additional structures. Explicitly,
the occult period map sends a smooth cubic threefold to the polarized Hodge structure of a cubic
fourfold which is defined as the triple cover of P4 branched along the cubic threefold. This realizes
the moduli of smooth cubic threefolds as an arrangement complement in an arithmetic ball quotient
of dimension 10. There are also occult period maps for cubic surfaces, quartic curves and non-
hyperelliptic curves of genus 4, which realized the moduli spaces as arrangement complements in
arithmetic ball quotients of dimension 4, 6, 9 respectively. LetM be the moduli space (constructed
by GIT) in one of these four cases, and Γ\B the corresponding ball quotient. Denote P : M−→ Γ\B
to be the occult period map. By [ACT02, ACT11], [LS07], [Kon00, Kon02]:

Theorem 2.1 (Allcock-Carlson-Toledo, Looijenga-Swierstra, Kondō). The occult period map P : M−→
Γ\B is an open embedding between quasi-projective varieties.

Noticing that both two sides of P have natural orbifold structures, Kudla and Rapoport con-
jectured:
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Conjecture 2.2 (Kudla-Rapoport). The occult period map P identifies the natural orbifold struc-
tures ofM and P(M) ⊂ Γ\B.

I confirmed those conjectures in [Zhe17]. For the two cases of cubics, the key step is to
show:

Theorem 2.3. For X a smooth cubic fourfold, the automorphism group of polarized Hodge structure
on H4(X,Z) is naturally identified with Aut(X). For T a smooth cubic threefold, the automorphism
group of the polarized intermediate Jacobian J(T ) is naturally identified with Aut(T )× µ2.

The first part of theorem 2.3 and the global Torelli theorem for cubic fourfolds imply that, for
any two smooth cubic fourfolds X1, X2 with φ : H4(X1,Z) ∼= H4(X2,Z) preserving the polarized
Hodge structures on both sides, there exists a linear isomorphism f : X2

∼= X1 such that f∗ = φ.
This strong global Torelli was claimed in [Cha12] using the Beauville-Donagi construction and
Verbitsky’s Torelli theorem for hyper-Kähler manifolds (see [Mar11]). Our approach, which made
use of Luna’s étale slice theorem, was more direct.

2.2. Future plan. A long-term question is whether theorem 2.3 holds in general. Precisely:

Question 2.4. Let be given a smooth degree d n-fold X with d ≥ 3 and n ≥ 2. If n is even, we have
a group morphism ϕ : Aut(X) −→ Auths(H

n(X,Z), H
n
2 ), where Auths stands for group of Hodge i-

sometries and H is the hyperplane class. If n is odd, we have ϕ : Aut(X) −→ Auths(H
n(X,Z))/{±1}.

For which (d, n) is the morphism ϕ surjective?

It is worthwhile to mention that for all but finitely many (d, n), the morphisms ϕ are known to
be injective. See [JL17] (proposition 2.12).

The graph of an automorphism of X is a cycle on X×X of dimension n. By Künneth theorem,
a Hodge isomotry of Hn(X,Z) gives rise to a Hodge class in H2n(X × X,Z). Question 2.4 asks
when certain Hodge class on X ×X is induced by the graph of an automorphism of X.

3. Automorphism groups of K3 surfaces and cubic fourfolds

A consequence of the Torelli theorem for K3 surfaces is that there is a close connection between
the automorphism group Aut(S) of a K3 surface S and the Hodge isometries of H2(S,Z). Nikulin
[Nik79a] started a systematic study of the possible finite automorphism groups for K3 surfaces
by means of lattice theory ([Nik79b]). This topic culminated with the celebrated result of Mukai
[Muk88] relating the classification of the finite groups of symplectic automorphisms acting on K3
surfaces with certain subgroups of the Mathieu groupM23. We denote Auts(S) to be the symplectic
automorphism group of a K3 surface S.

Theorem 3.1 (Mukai). There exists a bijection between the finite groups G ⊂ Auts(S) acting
symplectically on some projective K3 surface S and the subgroups G of the Mathieu group M23 with
the induced action on {1, 2, . . . , 24} having at least 5 orbits.

Mukai’s work started a fascinating new topic, the Mathieu Moonshine conjecture, which relates
the elliptic genus of a K3 surface and irreducible representations of the Mathieu group M24. This
will be discussed in section 3.2.1.
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Kondō [Kon98] has simplified Mukai’s proof by relating the classification problem to (the auto-
morphisms of) the Niemeier lattices. Kondō’s approach avoids the Leech lattice, but it turns out
that a related construction that involves only the Leech lattice behaves more uniformly and adapts
to higher dimensions. See [Huy16].

3.1. Symplectic automorphism groups of smooth cubic fourfolds. At Radu Laza’s sugges-
tion, we started working on classification of automorphism groups of smooth cubic fourfolds and
obtained the following:

Theorem 3.2 (Laza-Zheng). Let X be a smooth cubic fourfold with symplectic automorphism group
G (symplectic means that G acts trivially on H3,1(X)). Let F be the moduli space of cubic fourfold
with the specified symplectic action by group G. Then we have and only have the following situations:

(1) Case dim(F) = 20, G = 1.

(2) Case dim(F) = 12, G = Z/2.

(3) Case dim(F) = 8, G = (Z/2)2 or G = Z/3.

(4) Case dim(F) = 6, G = S3 or Z/4.

(5) Case dim(F) = 5, G = D8.

(6) Case dim(F) = 4, G = A3,3, D12, A4, D10.

(7) Case dim(F) = 3, G = S4 or Q8.

(8) Case dim(F) = 2, G = 31+4 : 2, A4,3, A5, 3
2.4, S3,3, F21, Hol(4) or QD16.

(9) Case dim(F) = 1, G = 31+4 : 2.2, A6,PSL(2,F7), S5,M9, 3
2.D8 or T48.

(10) Case dim(F) = 0, G = 34 : A6, A7, 3
1+4 : 2.22,M10,PSL(2,F11) or (3×A5) : 2.

Previously, the best result was a classification of prime-power-order automorphisms by Fu
([Fu16]). Actually, we did more in [LZ18]. We found explicit equations for cubic fourfolds in many
cases. Furthermore, We considered the uniqueness problem for a given G, namely, whether the
moduli of cubic fourfolds with action of G is irreducible. In particular, we gave precise classification
of the cubic fourfolds when dim(F) = 0.

An outline of the proof of theorem 3.2 is as follows. Let be given a smooth cubic fourfold X
with symplectic automorphism group G = Auts(X). The covariant lattice SG(X) of the induced
action of G on H4(X,Z) is a primitive sublattice of the Leech lattice L. Via this, the group G is
a subgroup of the Conway group Co0 = Aut(L). There is a classification [HM16] of subgroups of
Co0 which is the maximal one fixing certain sublattice of L. Then the list in [HM16] contains all
symplectic automorphism groups of smooth cubic fourfolds. We were able to give precise criterion
on when a subgroup of Co0 comes from a symplectic action on smooth cubic fourfold. Finally, we
applied Nikulin’s criterion on existence of even lattices with given genus ([Nik79b]) to determine all
possibilities of G.

As shown in theorem 3.2, there are 34 possibilites of finite groups realized as symplectic auto-
morphism group of smooth cubic fourfolds ([LZ18]). This offers examples for which we can apply the
result in [YZ18b] to obtain identifications between GIT-compactifications and Looijenga compacti-
fications of type IV domains. See section 4 for more on this part of my work with Yu [YZ18b].

3.2. Future work.
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3.2.1. Automorphism groups and cubics. There are automorphisms of smooth cubic fourfolds which
are not symplectic. Therefore, after the classification of symplectic automorphism groups, it is
natural to ask:

Question 3.3. Which groups appear as automorphism groups of smooth cubic fourfolds?

In fact, we have already had new discoveries regarding to those groups based on the results of
[LZ18]. We proposed a procedure to figure out all automorphism groups of smooth cubic fourfolds,
which was accessible by programming. However, we are expecting for more conceptual structures
to reduce the calculation.

The classification of automorphism groups of cubic threefolds is far from complete. Notice
that a smooth cubic threefold gives rise to a smooth cubic fourfold with a specified order three
automorphism. We ask:

Question 3.4. With the help of classification results on automorphism groups of cubic fourfolds,
can we obtain new results on classification of automorphism groups of cubic threefolds?

3.2.2. Automorphism groups and hyper-Kähler manifolds. Finite groups of symplectic automorphis-
m of hyper-Kähler manifolds of type K3[2] are classified in [HM14]. There are 15 such groups which
are maximal. An appealing question raised by the authors of [HM14] is:

Question 3.5 (Höhn-Mason). What are the explicit descriptions of the hyper-Kähler manifolds with
maximal finite symplectic automorphism groups?

Considering symplectic automorphism groups of polarized hyper-Kähler manifolds which are
Fano scheme of lines on smooth cubic fourfolds ([BD85]), we obtain 6 groups out of the 15. Besides
the Beauville-Donagi construction ([BD85]), we have other constructions ([DV10], [O’G06], [RV17])
of 20-dimensional families of polarized hyper-Kähler manifolds of type K3[2].

Question 3.6. Can we use those constructions to obtain type K3[2] hyper-Kähler with maximal
symplectic automorphism groups?

3.2.3. Mathieu moonshine. Eguchi, Ooguri and Tachikawa ([EOT11]) observed that the elliptic
genus of a K3 surface has a decomposition with coefficients in terms of the dimensions of irreducible
representations of the Mathieu groupM24. This is formulated as the Mathieu Moonshine conjecture.
EOT’s observation leads to a more general conjecture, called the Umbral Moonshine conjecture,
which is rigorously proved in [DGO15]. However, the intrinsic nature of those phenomena is still a
mystery.

More Moonshine phenomena were found for some simple subgroups ofM24, for instance, there are
[EH12] about PSL(2,F11), and [EH13] about the mathieu groupM12. We observed that PSL(2,F11)
appears as symplectic automorphism group of certain cubic fourfold (namely, the triple cover of P4

branched along the Klein cubic threefold).

Question 3.7. Can we establish relations between automorphism groups of K3 surfaces/cubic
fourfolds/hyper-Kähler manifolds and Moonshine phenomena for finite subgroups of M24 or Co0?
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4. Moduli theory related to K3 surfaces and cubic fourfolds

4.1. Moduli of symmetric cubic fourfolds. The occult period map realizes the moduli of s-
mooth cubic threefolds as an arrangement complement in an arithmetic ball quotient of dimension
10. An extension of the occult period map identifies the GIT-compactification and the Looijenga
compactification. These were proved in [ACT11] and [LS07] independently. The occult period map
essentially views cubic threefold as a cubic fourfold with a specified order three automorphism. In
[YZ18b], we generalize the work in [ACT11] to cubic fourfolds with any specified group action.

Theorem 4.1 (Yu-Zheng). Let be given a smooth cubic fourfold X with an action of a finite group
G. We can use method in GIT to construct a moduli space F of smooth cubic fourfolds with the
same type of action by G. This space F is an irreducible normal quasi-projective variety. We
have a Hermitian symmetric domain D (which is either a ball or type IV domain) with a proper
discontinuously action by an arithmetic group Γ, such that there exists a period map

P : F −→ Γ\D

which is an algebraic open embedding. Moreover, there is an extension:

P : F ∼= Γ\DH∗

where F is the GIT-compactification of F , H∗ is a Γ-invariant hyperplane arrangement in D, and
Γ\DH∗ is the Looijenga compactification of Γ\(D−H∗).

There are two aspects I would like to emphasize. Firstly, in [YZ18b] we were able to deal with
any finite group actions, which provided a bunch of new examples of locally symmetric varieties with
modular meaning. Secondly, to show the identifications between GIT-compactifications and Looi-
jenga compactifications, we adopted a new approach instead of the standard one, and our approach
turned out to be more natural and universal in general situation. The standard approach needs a
calculation of self-intersections of the members in the hyperplane arrangement H∗. Our approach
avoided such calculations, and used instead certain functorial properties of GIT-compactifications,
Baily-Borel compactifications and Looijenga compactifications, together with the characterization
of the image of the period map for smooth cubic fourfolds (by Looijenga [Loo09] and Laza [Laz10]
independently).

4.2. Moduli of singular sextic curves. We extended our ideas and techniques in [YZ18b] to
characterize moduli spaces of nodal sextic curves. See [YZ18a].

The key idea is that the double cover of P2 ramifying along a nodal sextic curve is a nodal K3
surface. The resolution of a nodal K3 surface is a smooth K3 surface with a natural lattice polar-
ization. There is a natural stratification on the moduli space of plane sextic curves induced by the
number of nodes. Let T be a singular type, which corresponds to an irreducible component of certain
strata. Let FT be the moduli space of sextic curves of type T and FT the GIT-compactification,
which are constructed via geometric invariant theory. The period map of the corresponding lattice-
poarized K3 surfaces gives a morphism P : FT −→ Γ\D. Here Γ\D is an arithemetic quotient of
type IV domain. There is a Γ-invariant hyperplane arrangement H∗ on D.

Theorem 4.2 (Yu-Zheng). For any singular type T , the period map P : FT −→ Γ\D is an algebraic
open embedding and extends to an isomorphism between projective varieties P : FT

∼= Γ\DH∗ .
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For most choices of T , the hyperplane arrangements H∗ are empty and hence we identify FT

with the Baily-Borel compactifications Γ\Dbb
of Γ\D. In [YZ18a], we gave a criterion on when H∗

is empty.

As special cases, we recover works concerning moduli of six lines ([MSY92]), moduli of pairs
consisting of a quintic curve and a line ([Laz09]), and moduli of triples consisting of a quartic
curve and two lines ([GMGZ17]). Our work has close relation with low genus curves and del Pezzo
surfaces. For example, the normalization of a sextic curve with 4 nodes has genus 6. And a generic
genus 6 curve lies on a del Pezzo surface of degree 5. See [AK11].

4.3. Future plan.

4.3.1. Structure of the modular varieties. From [YZ18b, YZ18a], we obtain a bunch of locally sym-
metric varieties with modular meaning.

Question 4.3. Can we say more about structures of (the Baily-Borel or Looijenga compactifications
of) those modular varieties, for instances, their cohomology groups, Picard groups, Chow rings,
homotopy groups, rationalities, Hasse-Weil zeta functions and so on?

4.3.2. Teichmüller curve. Another potential direction involves of dynamical system. A Teichmüller
curve is a quasi-projective complex geodesic inMg (the moduli of Riemann surfaces of genus g) with
Teichmüller metric. In [McM03], McMullen constructed an infinite series of Teichmüller curves in
M2. An explicit description of those Teichmüller curves are given via theory of translation surface,
which is now an active area in dynamical system. The Teichmüller curves constructed in [McM03]
lie on Hilbert modular surfaces. From [YZ18b, YZ18a], we can produce modular curves and modular
surfaces as moduli spaces.

Question 4.4. Can we produce Teichmüller curves via moduli of K3 surfaces or cubic fourfolds
with additional structures? If so, how are the K3 surfaces/cubic fourfolds connected to translation
surfaces? Can we obtain interesting connection to number theory?
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